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The configuration model is a standard tool for uniformly generating random graphs with a spec-
ified degree sequence, and is often used as a null model to evaluate how much of an observed
network’s structure can be explained by its degree structure alone. A Markov chain Monte Carlo
(MCMC) algorithm, based on a degree-preserving double-edge swap, provides an asymptotic so-
lution to sample from the configuration model. However, accurately and efficiently detecting this
Markov chain’s convergence on its stationary distribution remains an unsolved problem. Here, we
provide a solution to detect convergence and sample from the configuration model. We develop an
algorithm, based on the assortativity of the sampled graphs, for estimating the gap between effec-
tively independent MCMC states, and a computationally efficient gap-estimation heuristic derived
from analyzing a corpus of 509 empirical networks. We provide a convergence detection method
based on the Dickey-Fuller Generalized Least Squares test, which we show is more accurate and
efficient than three alternative Markov chain convergence tests.

In the analysis and modeling of networks, random
graph models are widely used as both a substrate for
numerical experiments and as a null model or reference
distribution to evaluate whether some network statistic
is typical or unusual. Given a sequence of non-negative
integers {k} whose sum is even, the configuration model
aims at generating uniform random graphs with the de-
gree sequence {k}. Thus, the configuration model is a
special kind of random graph model, conditioned on a
specified degree sequence, that allows researchers to as-
sess the structural consequences of a network’s degree
structure [1–4]. It is among the most widely used random
graph models in network science [5–9], and it provides the
basis for many theoretical results [10–13].

The configuration model for networks with self-loops
and multi-edges is the most well known [14]. There are,
in fact, eight different configuration models, depending
on whether the random graph to be generated is vertex-
labeled or stub-labeled—that is, whether or not it mat-
ters which “stub” on a vertex i a “stub” from vertex
j attaches to—and whether it is allowed to have self-
loops and/or multi-edges (Fig. 1). The distinction be-
tween these different flavors of the configuration model
has practical significance: Fosdick et al. [15] showed that
the distribution of network statistics in different graph
spaces can differ so much that an incorrect choice of
graph space can lead to spurious or even opposite conclu-
sions about the significance of some empirical networks’
observed characteristics.

Sampling a graph from the configuration model is
straightforward if the graph space is stub-labeled and
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allows the networks to have both self-loops and multi-
edges. In this case, a simple stub matching algorithm
suffices [14], which chooses a uniform random matching
of all the edge stubs of the network, and can be run
in O(m) time, where m is the number of edges. For
all other graph spaces, it is common to instead gener-
ate a network using the stub matching algorithm, and
then simply remove the self-loops or collapse the multi-
edges in the generated network. As the graph grows,
such self-loops and multi-edges are a vanishing fraction
of all edges when the graph is sparse, as is usually de-
sired. However, these modifications change the resulting
network in highly non-random ways, because high-degree
nodes are more likely to participate in both self-loops and
multi-edges than are low-degree nodes. Hence, using the
stub matching algorithm in this common way violates
the underlying assumptions of the configuration model,
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FIG. 1. A small network in each of eight distinct configura-
tion model graph spaces, corresponding to all combinations
of allowing (c-d, g-h) or not allowing (a-b, e-f) multi-edges,
and allowing (e-f, g-h) or not allowing (a-b, c-d) self-loops,
in either a vertex-labeled space (1st and 3rd columns) or a
stub-labeled space (2nd and 4th columns).
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and produces non-uniform draws from the target graph
space. In other words: the stub-matching algorithm is
theoretically justified for sampling only from the stub-
labeled graph spaces where multi-edges and self-loops are
allowed.

An alternative solution for drawing from the other
seven graph spaces, including simple graphs, is to sample
them using a Markov chain Monte Carlo (MCMC) algo-
rithm based on double-edge swaps. Although a number
of such algorithms have been defined, the Fosdick et al.
MCMC [15] is known to asymptotically converge on the
target uniform distribution for each of the eight graph
spaces (with rare exceptions in graph spaces that allow
self-loops but not multi-edges [16]). However, practical
guidance on the time required for convergence with finite-
sized networks remains unknown. This is the question we
investigate and answer here.

Theoretical results for sampling from the con-
figuration model: The problem of sampling uniform
random graphs with fixed degree sequence has been well
studied. The earliest methods for generating uniform
random networks with given degrees were based on the
pairing model [17, 18] (see [19] for a brief history), which
starts with a network where no stubs are connected, and
then repeatedly chooses uniformly random pairs of stubs
to connect forming an edge. If a simple graph is de-
sired, the pairing algorithm is simply repeated until a
simple graph is obtained. This method is impractical
for generating simple networks because the probability
of at lease one stub-match inducing a multi-edge or a
self-loop is overwhelming as the size of the graph in-
creases. For instance, this method would require about
1010 trials in expectation to produce one k-regular sim-
ple graph when k = 10 and the number of nodes in the
network n → ∞ [17]. Algorithms for generating ran-
dom graphs with specified properties, including degree
sequence, have also been studied [20, 21], along with
those based on the pairing model for sampling k-regular
graphs in polynomial time when k is bounded. These
include sampling from an exactly uniform distribution
when k = O(

√
log n) [22], and from asymptotically uni-

form distributions when k = O(n1/3) [23], o(n1/5) [24],
o(n1/11(log n)−3/11) [25], and o(n1/3) [26]. In these algo-
rithms, the output distribution becomes closer to uniform
as n gets larger, but there is no parameter for controlling
how far the distribution is from uniform.

A significant advancement on exactly uniform gen-
eration of simple graphs with more flexible degrees
was made using a switch-based algorithm [27], which
allowed sampling of exactly uniform random graphs
in O(m+ (

∑
i k

2
i )

2) average running time, when the
maximum degree kmax satisfies the conditions k3max =
O(m2/

∑
i k

2
i ) and k3max = o(m +

∑
i k

2
i ). Here m is the

number of edges in the graph and ki is the degree of node
i. For k-regular graphs, this algorithm runs in O(n2k4)
average running time when k = O(n1/3). The algorithm
generates random pairings from the pairing model result-
ing in both self-loops and multi-edges, and then uses ran-

dom switchings to remove and add pairs of edges, reach-
ing a simple graph in the end. Later, this algorithm was
improved for generating exactly uniform k-regular simple
graphs in running time O(nk3)[28] and O(nk + k4) [29]
for the more relaxed bound of k = o(

√
n). This method

was subsequently adapted to uniformly sample random
graphs with power-law degree sequences with exponent
γ ≥ 2.88 in O(n4.081) [30] and O(n)[29] time.

More direct solutions for faster sampling of simple
graphs with arbitrary degree sequence were proposed us-
ing sequential importance sampling with a O(mkmax)
running time for kmax = O(m1/4) [31], thus improving
the previous best known running time of O(m2k2max) [27].
Later, approaches for sampling general graphs were de-
veloped with a worst case running time of O(n2m) [32].
Similar methods for producing biased non-uniform sam-
ples, which are then re-weighted to compute unbiased
estimates and probabilities of the desired uniform dis-
tribution have also been proposed, with a running time
of O(nm) for simple undirected [33] and directed [34]
graphs. However, there are no practical bounds on the
number of samples required to achieve any particular
desired accuracy against the target uniform distribu-
tion [15, 35], and deriving adequate bounds on the vari-
ance for importance sampling algorithms remains an
open question [32, 36].

The first MCMC approach for sampling graphs with
a given degree sequence was developed for approximate
uniform sampling of any k-regular degree sequence [37].
The Markov chain was proved to be rapidly mixing [38,
39], taking time polynomial in n. However, because of
the high order of the polynomial, the method had lim-
ited practical significance [19]. This algorithm was ex-
tended to certain non-regular degree sequences [37] for
which the Markov chain’s mixing time is polynomial only
if the degree sequence is P-stable (see [37, 40] for de-
tails on the conditions of P-stability). Intuitively, a de-
gree sequence {k} is P-stable if the number of possible
graphs with the degree sequence {k} does not change
drastically when {k} is slightly perturbed [37]. Markov-
chain based methods have also been proposed to sam-
ple from almost uniform distributions, which has been
conjectured to be rapidly mixing for arbitrary degree se-
quence (KTV conjecture) [41], but proved so only for the
regular [41] and half-regular [42] bipartite case. Even
though these Markov chains’ mixing times are bounded
by a polynomial in n, the exact asymptotic bounds are
not known and it has not been proved that the chains
mix rapidly in general.

Improved Monte Carlo algorithms based on impor-
tance sampling were proposed for sampling simple
graphs with arbitrary degree sequences [43], and are
especially useful in the fields of social networks [44–46]
and ecology [47–49]. Switching-based MCMC algorithms
were also proposed for generating random (0,1)-matrices
with prescribed row and column sums [50, 51]. However,
these methods either do not sample from exact uniform
distributions or are computationally expensive even for
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small networks, e.g., n = 100 [43, 50, 51].
More recent advancements in MCMC approaches of-

fer theoretical upper bounds on mixing times for sam-
pling graphs with specific types of degree distribu-
tions. For example, the mixing time of one Markov
chain for sampling k-regular graphs is polynomially
bounded as O(k16n9 log(kn)) for undirected [52], and
O(k26n10 log(kn)) for directed graphs [53]. These
results were then extended to the non-regular case
when 3 ≤ kmax ≤ 1/4

√
2m, with a mixing time of

O(k14max(2m)10 log(2m)) [54]. In practice, this algorithm
works for degree sequences that are not too far from reg-
ular. Even though these Markov chains could be made to
sample from an exactly uniform distribution by running
the chain sufficiently long, the proven bounds on their
mixing times are too high for any practical use. Addi-
tionally, none of these results cover the case of generic
degree sequences and hence do not apply universally.

Practical approaches for assessing MCMC con-
vergence: Since the convergence rates of different
MCMC algorithms on their target distributions differ
considerably, analytically estimating the mixing times
for arbitrary MCMCs is not possible [55–57]. Instead,
convergence can be detected in an online fashion by ex-
amining the local statistics of the sequence of states the
MCMC visits [58–60]. Such convergence tests have a
common structure: (1) a statistic calculated from each
state the MCMC visits, (2) a choice of how often to sam-
ple from the MCMC, referred to here as the sampling gap
η, and (3) a statistical test to assess when the calculated
statistic has converged to its steady state, i.e., asymp-
totic distribution. Many such tests have been developed
for general MCMCs [61–71], and several are included in
popular Python and R packages [72–74]. However, these
methods are not designed specifically for the configura-
tion model and, as we will show, they do not perform
well when applied to it. Detailed comparative analysis
of several MCMC convergence detection techniques have
highlighted their limitations with respect to their theo-
retical biases and practical implementations [57, 75–78].
Relatedly, Cowles and Carlin [59] study 13 different gen-
eral convergence diagnostics and find that every method
can fail to detect the type of convergence they were de-
signed to identify.

Here, we develop an efficient and accurate conver-
gence detection method specifically for the Fosdick et
al. double-edge swap MCMC [15] for sampling from the
configuration model. This method requires only an in-
put degree sequence and a choice of graph space. First,
we develop an algorithm for estimating a sampling gap
between MCMC states so that the sampled states are ef-
fectively independent. We then apply this algorithm to
a corpus of 509 real-world and semi-synthetic networks
spanning all eight graph spaces, and distill the experi-
mental results into a simple set of decision rules, based on
empirical scaling laws, for selecting the sampling gap au-
tomatically. We then specify a test for detecting MCMC
convergence based on applying a Dickey-Fuller General-

FIG. 2. (a) The degree-preserving double-edge swaps on a
pair of edges {(x, y), (w, z)} results in either {(x, y), (w, z)} →
{(x, z), (w, y)} or {(x, y), (w, z)} → {(x,w), (y, z)} as shown.
(b) If the vertices x, y, w, z are not distinct, double edge swap
{(x, y), (w, x)} → {(x, x), (w, y)} can introduce a self-loop,
(c) Similarly, if a third edge already exists among the vertices
x, y, w, z, a double edge swap {(x, y), (w, z)} → {(x,w), (y, z)}
can introduce a multi-edge.

ized Least Squares (DFGLS) test to the degree assor-
tativity values of the networks sampled by the MCMC,
and show through a series of experiments that this test
is effective at detecting convergence.

We then compare this method to several generic
MCMC convergence detection methods and show that
the DFGLS method is both more accurate and more
efficient when applied to real-world networks. We also
show that at the point the DFGLS method detects con-
vergence of the sampled graphs’ assortativity statistics,
other widely-used network statistics, including cluster-
ing coefficient, average path length, and the number of
triangles and squares, have also converged.

I. Materials and Methods

The Markov chain Monte Carlo algorithm described
by Fosdick et al. guarantees that the resulting stationary
distribution of the MCMC is uniform over graphs with
the specified degree sequence and graph space (except for
a rare subset of loopy graphs without multi-edges [16]). A
graph space is chosen by specifying (1) whether self-loops
are allowed or not, (2) whether multi-edges are allowed or
not, and (3) whether the graph is vertex- or stub-labeled
(Fig. 1). In a vertex-labeled graph, the vertices have
distinct labels, while the stubs do not; whereas in a stub-
labeled graph, each stub has a distinct label and hence
each vertex can be identified by the unique set of stubs
attached to it. For example, the stub-labeled graph with
the exact same stub-connections as in Fig. 1h, except
where stub p is attached to stub r, and q to s, would be
distinguishable from the stub-labeled graph in Fig. 1h;
but they would not be distinct in a vertex-labeled space
as both would be the same graph shown in Fig. 1g.

A co-authorship network can be viewed as a vertex-
labeled multigraph. If authors A and B have co-authored
two papers, it would be nonsensical to match author A’s
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first collaboration stub with author B’s second collab-
oration stub or vice versa. In contrast, a network de-
picting an inter-school chess tournament is best viewed
as stub-labeled with each node representing a school and
stubs representing students in each school. Two students
will be connected if they play a game against each other.
Hence, every possible matching of stubs represents a dis-
tinct set of games among students, and such a network
would be stub-labeled. See [15] for additional examples
of vertex-labeled and stub-labeled networks.

In the MCMC we study here for sampling from the
configuration model, each step of the chain is a degree-
preserving double edge swap (Fig. 2a), which transitions
from one graph Gt to another graph Gt+1. At each
step in the chain, we choose two edges {(x, y), (w, z)}
uniformly at random and replace them with either
{(x, z), (w, y)} or {(x,w), (y, z)} with equal probability.
Hence, a double-edge swap rewires exactly two edges,
while preserving the degrees of all nodes in the graph.

In order to sample correctly from the target distribu-
tion, the space of graphs we choose imposes restrictions
on which double-edge swaps are permitted. If the graph
proposed by a particular swap is outside the specified
graph space, e.g., it has a self-loop (Fig. 2b) or a multi-
edge (Fig. 2c) when such connections are forbidden, or if
certain other technical conditions are satisfied (see Ap-
pendix C), then the proposed change is rejected and the
current graph Gt is re-sampled, i.e., Gt+1 = Gt. Be-
cause the Markov chain traverses a sequence of graphs
where graph Gt differs from Gt+1 by at most one double
edge swap, graphs close to each other in the sequence are
highly serially correlated. Additionally, if graphs are re-
sampled very often, the serial correlation in the Markov
chain is even higher. This correlation naturally decays
between more distantly sampled points in the chain, but
the distance required for the level of correlation to fall
to a particular level must grow with the size of the net-
work, because each double-edge swap changes at most a
constant number of edges (two).

The Fosdick et al. MCMC algorithm is guaranteed to
sample graphs with a given degree sequence uniformly
at random only after it has converged to its stationary
distribution. Fosdick et al. provide a proof that this con-
vergence is achieved in the asymptotic limit of t → ∞.
However, in practice, there exists some finite time t∗ at
which the MCMC has effectively reached this asymptotic
state. Our goal is to detect the earliest time at which this
is true.

Here, we develop a complete solution to the practical
task of sampling from the configuration model. Our so-
lution divides this problem into three parts.

1. We select a network-level summary statistic that
quantifies a sufficiently non-trivial aspect of a net-
work’s structure, so that we may transform a se-
quence of graphs Gt, Gt+1, Gt+2, . . . from the
MCMC into a standard scalar time series xt, xt+1,
xt+2,. . . .

2. We develop an algorithm for choosing a “sampling
gap” η0 for the given network such that the values
xt and xt+η0

in the MCMC are statistically inde-
pendent.

3. Using a test of stationarity on thinned samples
{xt}, we assess the convergence of the MCMC on
its stationary distribution.

Throughout our analysis, we make extensive use
of a corpus of real-world and semi-synthetic networks
drawn from social, biological, technological domains [79].
We use these networks both to evaluate the methods
we describe, and to develop a set of computationally
lightweight, emperically grounded heuristics for automat-
ically parameterizing our solution. These networks in-
clude 103 simple graphs, 154 loopy graphs, 142 multi-
graphs and 110 loopy multigraphs, and range in size from
n = 16 to 30,269 nodes with a variety of edge densities
and degree distributions. Real networks with self-loops
but no multi-edges and networks with multi-edges but
no self-loops are relatively rare compared to those with
both or neither of them. To obtain a sufficient number
of such networks for our numerical experiments, we add
or delete self-loops from empirical networks in our cor-
pus to obtain semi-synthetic networks (see Sections II B 2
and IIB 4).
Finally, to make the methods described here more ac-

cessible to the community, we provide our own implemen-
tations in a Python package, which can be found here.

II. Results

A. Choosing the network statistic

To characterize the progression of the MCMC through
a graph space, we select the degree assortativity r of
a network as the cognizant network summary statistic
xt = f(Gt). The degree assortativity quantifies the ten-
dency of nodes with similar degrees to be connected, and
ranges over the interval [−1, 1]. Mathematically, r is cal-
culated as the normalized covariance of the degrees across
all the edges of the network, given by,

r =

∑
xy(Axy − kxky/2m)kxky∑

xy(kxδ(x, y)− kxky/2m)kxky
, (1)

where Axy is the adjacency matrix entry for nodes x and
y, kx is the degree of node x, m is the number of edges
in the network, and δ(x, y) = 1 if x = y and 0 otherwise.
The degree assortativity takes the value r = 1 if the

graph is composed of only cliques, because in that case,
the degree of every node is the same as that of its neigh-
bors. An exception to this is when all the cliques in the
network are of the same order, resulting in a k-regular
network, for which the degree assortativity is undefined.
The degree assortativity takes the value r = −1 if the
graph is composed only of equal-sized stars, i.e., trees

https://upasanadutta98.github.io/ConfigModel_MCMC/
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with exactly one internal node and ℓ ≥ 2 leaves. In that
case, the highest degree nodes of the network connect
only to nodes with the lowest degree. While it is com-
mon to expect that r = 0 in a random graph, for many
graph spaces this is not the case [15].

There are, of course, many alternative network-level
summary statistics that could be used instead of degree
assortativity, including the clustering coefficient, mean
geodesic path length, mean betweenness centrality, and
many more. However, many such statistics are computa-
tionally expensive to calculate repeatedly, for each step
of the MCMC, which would limit the scalability of a sam-
pling algorithm. The degree assortativity admits a com-
putationally efficient update equation such that it can
be calculated quickly after every double-edge swap of the
Markov chain, allowing an algorithm to sample longer
chains and larger networks.

Suppose that a double-edge swap {(x, y), (w, z)} →
{(x,w), (y, z)} is performed (Fig. 2a). Using the defi-
nition of degree assortativity, its change from this swap
can be written as

∆r =
(kxkw + kykz − kxky − kwkz)× 4m

(
∑

x kx ×∑
x k

3
x)− (

∑
x k

2
x)

2
, (2)

(see Appendix A for derivation).
Given a fixed degree sequence, the denominator in

Eq. (2) is a constant, and hence can be calculated once at
a cost of O(m) when the MCMC is first initialized, and
stored for reference later. The numerator only requires
the degrees kx, ky, kw, kz of the four vertices involved
in the swap, and the number of edges m. Hence it takes
only constant time O(1) to update r, given the assortativ-
ity of the current graph Gt and the degrees of the nodes
chosen for the double-edge swap. Calculating the initial
assortativity r0 is more expensive, but is done only once
with a cost that amortizes over the length of the chain.
It can be calculated as,

r0 =
S1Sℓ − S2

2

S1S3 − S2
2

, (3)

where S1 =
∑

x kx, S2 =
∑

x k
2
x, S3 =

∑
x k

3
x and

Sℓ =
∑

xy Axykxky = 2
∑

(x,y)∈E kxky. The expression

in Eq. (3) contains only O(n + m) terms and hence is
substantially more efficient than Eq. (1), which contains
O(n2) terms [14]. Only in the case of dense networks,
where m = Θ(n2), are the two calculations equally inef-
ficient.

A caveat of choosing degree assortativity as the net-
work statistic for monitoring the progression of the
MCMC over time is that it is undefined for k-regular
networks. For these networks, an alternative network
statistic must be used, such as any of the ones men-
tioned above, with their corresponding higher computa-
tional cost.

To illustrate the evolution of the degree assortativ-
ity r over the course of a Markov chain, we apply the

initial value

stationary value

FIG. 3. Network degree assortativity r as a function of the
number of double-edge swaps s performed in the Markov
chain, for a vertex-labeled simple graph with n = 16, 062
nodes and m = 25, 593 edges. The degree assortativity moves
away from the initial value r0 = −0.098 as the Markov chain
progresses, and then converges towards a value, displaying
non-trivial fluctuations around it.

Fosdick et al. MCMC to a modest sized vertex-labeled
simple graph with n = 16, 062 nodes and m = 25, 593
edges (Fig. 3). In the early part of the Markov chain,
the degree assortativity quickly moves away from the ini-
tial value r0 as the double-edge swaps initially random-
ize the empirical correlations in the network’s structure.
In general, as a Markov chain progresses, the degree as-
sortativity converges on some particular value, and then
fluctuates around it. The key problem that convergence
detection seeks to solve is deciding when statistical ex-
cursions are sufficiently random that we may declare the
Markov chain to have reached its stationary distribution.
In making this decision, we note that it is better to de-
tect convergence too late rather than too early: a late
decision merely wastes time in the form of extra steps
in the Markov chain, while an early decision results in
sampling from the wrong distribution of graphs.

B. Choosing the sampling gap η0

By construction, the graphs that the Markov chain
visits are serially correlated, as each double-edge swap
changes at most four adjacencies. The magnitude of
this serial correlation must therefore increase with the
number of edges m, because it takes more steps in the
Markov chain to randomize a large portion of the edges.
As the task of detecting convergence is one of deciding
when the fluctuations in the structure of the Markov
chain’s states are indicative of a stationary distribution,
large serial correlations pose a significant problem by
creating the appearance of non-random structure in the
chain. To generate uniform random graphs from the con-
figuration model, the sampled states from the MCMC
must be sufficiently well separated so that they are ef-
fectively independent. To identify the spacing between
states that yields a suitable sample, we develop an algo-
rithm based on the autocorrelation function and statisti-
cal sampling theory, which can be applied to any network
for obtaining an appropriate sampling gap η0 between
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states. Given a choice of η0, a sequence of sample states
Xη0

= (xt, xt+η0
, xt+2η0

, ..., xt+(T−1)η0
) would then be-

have as a set of T independent draws from the MCMC’s
stationary distribution.

The autocorrelation function of a time series measures
the pairwise correlation of values xt and xt+τ as a func-
tion of the lag τ that separates them (see Appendix B).
We can use a test for independence based on the auto-
correlation function to determine whether a sample Xη,
within which consecutive values are η swaps apart in the
Markov chain, can be considered to be composed of in-
dependent and identically distributed (iid) draws from a
stationary distribution.

Algorithm 1 GetSamplingGap: Choosing the sampling
gap η0 for a network

Input: G0 (network), C (the number of independent MCMC
chains), ST (list of degree assortativity values of size T),
α (significance level for each test), u (lower bound on
number of MCMC chains that have significant lag-1 au-
tocorrelation to reject independence)

Output: The sampling gap η0 for graph G0

1: Let m be the number of edges in G0

2: Run the MCMC for 1000m swaps (burn-in)
3: Let x1 be the first degree assortativity value after the

burn-in
4: η = 0
5: dη = C
6: while dη > u do
7: η = η + ⌊0.05m⌋
8: dη = 0
9: for c ∈ [1, 2, . . . , C] do

10: Construct ST s.t. for 1 ≤ i ≤ T , si= xη×(i−1)+1

11: dc = CheckAutocorrLag1(ST , α)
12: dη = dη + dc

13: return η0 = η

Algorithm 2 CheckAutocorrLag1: Test for significant
lag-1 autocorrelation

Input: ST (time series of length T), α (significance level)
Output: 1, if lag-1 autocorrelation is statistically significant,

and 0 otherwise
1: Let τ be the lag at which the sample autocorrelation is

calculated
2: a = Autocorrelation(ST , τ = 1)

3: µ = − 1

T
[Eq. (4), with τ = 1]

4: σ2 =
T 4 − 4T 3 + 3T 2 + 4T − 4

(T + 1)T 2(T − 1)2
[Eq. (5), with τ = 1]

5: A =
a− µ

σ
6: z = (1− α)th quantile of N(0, 1).
7: if A > z then
8: return 1
9: else

10: return 0

The goal is to find the smallest value η0 for which the
sampled values in Xη behave like iid draws from a sta-

tionary distribution. In a sample of T iid normally dis-
tributed values, the autocorrelation value aτ for any lag
τ > 0 has mean

µ(aτ ) = − (T − τ)

T (T − 1)
, (4)

and variance

σ2(aτ ) =
T 4 − (τ + 3)T 3 + 3τT 2 + 2τ(τ + 1)T − 4τ2

(T + 1)T 2(T − 1)2
,

(5)
for 1 ≤ τ ≤ T − 1 [80]. Hence, to assess if Xη comprises
uniform random draws from a stationary distribution
(null hypothesis), we apply a hypothesis test that assesses
the autocorrelation value of Xη at τ = 1, where the crit-
ical values are obtained from Eq. (4) and Eq. (5) (Algo-
rithm 2) assuming a normal approximation as in Ref. [80].
We use the above mean and variance equations for the
sample autocorrelation instead of the more commonly
used asymptotic normal approximation with mean zero
and standard deviation n−1/2 for all lags τ > 0 [81–84]
because the asymptotic approximation has been shown
to be a poor approximation of the true distribution of
sample autocorrelation [80, 85]. We are particularly in-
terested in the autocorrelation at lag τ = 1 because each
state in the MCMC is likely to be most correlated with
the state immediately prior and immediately following it.
For a sampling gap η, if the τ = 1 autocorrelation of the
sample Xη is not statistically significant, the consecutive
degree assortativity values in Xη are effectively indepen-
dent, and a sampling gap of η is sufficient for drawing sta-
tistically uncorrelated states from the Markov chain. The
hypothesis test in this case is one-sided (upper-tailed)
since a state in the MCMC will always be positively cor-
related with the state exactly prior to it (except in patho-
logical cases).
To initialise the algorithm (Algorithm 1), the MCMC

is first run for 1000m swaps. This “burn-in” period en-
sures that in expectation, every edge has been proposed
for a swap 2000 times, which we take as a reasonable de-
gree of randomization before samples are taken for any
experiment. After the burn-in period, for each choice of
sampling gap η, the algorithm creates C sequences from
C independent Markov chains. Each sequence is a list of
the form ST = [s1, s2, s3, . . . , sT ], where si = xη(i−1)+1

for 1 ≤ i ≤ T . We perform hypothesis tests on C inde-
pendent chains because a single Markov chain’s trajec-
tory may not be representative of the structure of the
entire graph space.
The number of chains dη for which a statistically sig-

nificant τ = 1 autocorrelation is detected will tend to
decrease with increasing sampling gap η. To account for
multiple testing, we reject the null hypothesis of indepen-
dence for the given sampling gap η if more than u tests
are statistically significant, where u is selected to control
the family-wise error rate. The first value of η at which
dη ≤ u is returned as the effective choice of sampling gap
η0 for the network. The upper bound u is chosen based
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on the number of Markov chains C, the significance level
α of each test, and the desired family-wise Type-I error.
In our experiments, to obtain a family-wise Type-I error
rate of about 5% (5.8%), we choose C = 10, T = 500,
α = 0.04, and u = 1. This allows our method to detect
a τ = 1 autocorrelation of 0.1 with 99.9% power (see
power-analysis in Appendix B).

Although the above sampling gap estimation algorithm
can be applied to choose an appropriate value for η0, the
procedure itself is computationally expensive. To avoid
this cost, we now develop a set of efficient heuristics and
decision criteria using our corpus of empirical networks
by which to automatically choose η0 for a network, given
the fixed degree sequence and the choice of the graph
space.

1. Simple graphs

For simple networks, the Markov chain’s transition
probabilities are the same for both stub-labeled and
vertex-labeled spaces (see Appendix C 1). Hence, the
sampling gaps that Algorithm 1 estimates for a simple
network will be the same, in either the vertex-labeled
and the stub-labeled spaces.

We begin by running the sampling gap algorithm on
each of the 103 simple networks in our corpus. The es-
timated sampling gap η0 of the majority (86.4%) of the
networks satisfy an upper bound η0 = 2m (Fig. 4a,e).
For the remaining networks (13.6%), the estimated sam-
pling gap η0 (gray circles in Fig. 4a,e) is much larger
than what this simple heuristic upper bound predicts.
The reason the MCMC produces these unusually large
η0 estimates stems from the networks’ high density and
the Markov chain’s boundary enforcement criterion for
simple graphs: if the Markov chain proposes a double-
edge swap that would create a self-loop or a multi-edge,
thereby exiting the specified graph space, the algorithm
rejects this change and re-samples its current state. Re-
peated re-sampling extends the time needed for the serial
correlation to decay.

In order to estimate the likelihood of a re-sampling
event in the Markov chain, we must consider the prob-
ability of the chain proposing an edge swap that would
result in a multi-edge or self-loop. Suppose two edges
(x, y) and (w, z) are chosen uniformly at random for a
double-edge swap. We define two edges in a network
to be adjacent to each other if they have exactly one
common endpoint, implying that only 3 of the 4 vertices
they are incident on are distinct. For a Markov chain to
propose creating a multi-edge, the pair of chosen edges
cannot be adjacent. The probability q that two edges
chosen uniformly at random are not adjacent is given by

q = 1− Σik
2
i − 2m

m2 −m
. (6)

Next, the two kinds of edge swaps (Fig. 2a) that can take
place occur with equal probability. In both the cases, the

probability of rejecting the swap due to the creation of
a multi-edge is governed by the likelihood that an edge
already exists where the swap proposes to place one.
Thus, the probability of rejecting a proposed swap due

to the creation of a multi-edge is given by

Pr
(
rejection due to multi-edge

)
= q ×

[
1

2
Pr

(
multi-edge

∣∣{(x, y), (w, z)} → {(x, z), (w, y)}
)

+
1

2
Pr

(
multi-edge

∣∣{(x, y), (w, z)} → {(x,w), (y, z)}
)]

= q ×
[
1

2
Pr

(
at least one of (x, z) and (w, y) exists

)
+

1

2
Pr

(
at least one of (x,w) and (y, z) exists

)]
≈ q

2

(
1− (1− ρ)2

)
+

q

2

(
1− (1− ρ)2

)
≈ q × (2ρ− ρ2)

≈ 2ρ− ρ2 , (7)

where the probability of an edge existing between two
randomly chosen nodes is approximated as the network’s
edge density ρ. For simple graphs ρ = ⟨k⟩/n− 1 and for
loopy graphs ρ = ⟨k⟩/n, where ⟨k⟩ is the mean degree.
For all 103 simple networks in our corpus we find q ≈ 1

(see Appendix D Fig. 15a), meaning that the probability
that two randomly chosen edges are non-adjacent to each
other is approximately 1. This fact implies that the prob-
ability of rejecting a double-edge swap because it would
introduce a multi-edge is approximately 2ρ−ρ2. We refer
to the simplified expression of 2ρ−ρ2 = ω as the “density
factor” of a network, which gives a simple density-based
estimate of Pr(rejection due to multi-edge) in a graph
space that does not allow multi-edges. A more precise
estimate would exploit the moment structure of the de-
gree distribution, but such a formula is not necessary for
our purposes.
It can also be shown that the probability of reject-

ing a swap because it would introduce a self-loop (see
Appendix D) is (1 − q)/2 ≈ 0, because q ≈ 1. This
fact implies that, the sampling behaviour of the Markov
chain is governed more strongly by the rejection rate due
to forming multi-edges than from forming self-loops (see
Appendix D Fig. 15b), and this rate is governed by the
network’s density.
In our corpus of 103 simple networks, the vast majority

(86.4%) have a density factor ω < 0.25, six (5.8%) have
0.25 ≤ ω ≤ 0.5, five (4.9%) have 0.5 < ω ≤ 0.75 and the
remaining four (3.9%) have ω > 0.75. These frequencies
reflect the fact that real-world networks with very high
density typically occur only rarely [86], unless the net-
work is especially small. Across our simple network cor-
pus, we find that networks with a density factor ω < 0.25
yield sampling gap estimates that scale linearly with the
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FIG. 4. Space specific estimated sampling gap of networks for stub-labelled (a) simple graphs, (b) loopy graphs, (c) loopy
multigraphs, (d) multigraphs, and vertex-labeled (e) simple graphs, (f) loopy graphs, (g) loopy multigraphs, and (h) multigraphs.
The sampling gap η0 of the networks that satisfy the density criterion (ρ < 0.134) in simple (a,e) and loopy (b,f) graph spaces,
and the maximum degree criterion (maxi k

2
i ≤ 2m/3) in the vertex-labeled loopy multigraph (g) and multigraph (h) spaces are

shown as red circles, while those that do not satisfy these criteria, are shown in gray. Two networks in (a-b, e-f), 11 in (g) and
16 in (h) are not shown as their sampling gap fall above the plotted range.

number of edges m, while networks with a higher den-
sity are more likely to yield anomalously high sampling
gaps. We use this observation to divide networks into
two categories, based on their calculated densities ρ. If
a network’s density ρ ≥ 0.134, the sampling gap should
be estimated via the algorithm described above (Algo-
rithm 1); otherwise, a reasonable sampling gap is simply
η0 = 2m. Note that this provides an upper bound on
the estimated gaps of nearly all the empirical networks
(Fig. 4 a,e). There are four networks (4.5%) that satisfy
the network density criterion (ρ < 0.134) and yet their
estimated sampling gap is on average 1.09 and 1.12 times
our recommended upper bound η0 = 2m in the stub- and
vertex-labeled spaces, respectively.

2. Loopy graphs

Real-world “loopy” networks, meaning networks with
self-loops but no multi-edges, are uncommon. We con-
struct a reasonable empirical corpus of 154 loopy graphs
by obtaining 51 such networks from public reposito-
ries [79] and generating an additional 103 loopy graphs
by adding self-loops to our previous corpus of simple net-
works. To convert a simple network into a loopy network,
we first measured the fraction of nodes with a self-loop
in both our corpus of 110 real-world loopy multigraphs
and the 51 real-world loopy graphs to obtain an empiri-
cal distribution of loopiness. We note that this loopiness
distribution is strongly bimodal: 44% have at most 5%
of nodes with self-loops, while 39.1% have at least 95% of
nodes with self-loops. For each simple graph in our cor-
pus, we then chose a random fraction from this empirical
loopiness distribution and added a self-loop to each node
with the corresponding probability.

Although the MCMC algorithm proposed by Fosdick

et al. correctly samples graphs with fixed degree se-
quence post convergence, there are certain technical con-
ditions [16] that the degree sequence must satisfy for this
to hold true in a loopy graph space in order for the
double-edge swap algorithm to be able to reach every
valid loopy graph with the given degree sequence. Only
a rare set of loopy graphs fail to satisfy the required con-
ditions, and in our corpus of loopy graphs, all the 154
networks’ degree sequences met them. If a network fails
to meet the required conditions, the Nishimura MCMC
must instead be used [16], which augments double-edge
swaps with triangle-loop swaps, rather than the Fosdick
et al. MCMC used here.
For our loopy network corpus, we repeat our analysis

by first running the sampling gap algorithm on each net-
work in our loopy corpus. We note that because multi-
edges are not permitted in the loopy space, the density
criterion ρ < 0.134 has the same relevance here as it does
with simple graphs. In our loopy corpus of 154 networks,
140 (90.9%) networks have a density ρ < 0.134, and the
same scaling law of η0 = 2m is an upper bound in both
stub- and vertex-labeled spaces (see Appendix C 2) on
nearly all estimated sampling gap values for these net-
works (Fig. 4b,f). Of the 140 loopy networks that have
ρ < 0.134, there are three (2.1%) and six (4.2%) in the
stub- and vertex-labeled spaces for which the estimated
sampling gaps are on average 1.06 and 1.08 times our
proposed upper bound η0 = 2m, respectively.

3. Loopy multigraphs

For stub-labeled loopy multigraphs, it is common to
directly construct networks with a fixed degree sequence
by choosing a uniformly random matching on the set of
edge “stubs” given by that sequence [14, 32]. This algo-
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rithm is computationally cheap, running in O(m) time,
compared to an MCMC approach. However, stub match-
ing cannot be used to correctly sample from the vertex-
labeled loopy multigraph space. In that case, we instead
use the Fosdick et al. MCMC. For completeness, we ana-
lyze the MCMC’s behavior in both the stub-labeled and
vertex-labeled loopy multigraph settings.

In the loopy multigraph space, the Markov chain’s
transition probabilities in the stub-labeled and vertex-
labeled spaces are different. In the stub-labeled case,
the Markov chain never re-samples a state, while in the
vertex-labeled space, some of the proposed transitions
are accepted with a probability less than 1. As a result,
the Markov chain may re-sample some states often (see
Appendix C 3), thus making the estimated sampling gap
in the vertex-labeled space typically greater than in the
stub-labeled space.

We investigate differences between the spaces by run-
ning the sampling gap algorithm on our corpus of 110
real-world loppy multigraphs (Fig. 4c,g). We find that
the estimated sampling gap tends to be marginally higher
for vertex-labeled graphs. However, for 42 of 110 vertex-
labeled loopy multigraphs, the estimated sampling gap
(gray circles in Fig. 4g) is much higher than the simple
heuristic η0 = 2.3m that fits the majority of empirical
networks in this graph space. This behaviour for these
networks can be understood by considering how the edge
multiplicities of a network and its degree distribution in-
fluence the MCMC’s dynamics.

In the vertex-labeled space, the likelihood of a swap
being rejected is directly proportional to the multiplic-
ity of the edges chosen for the swap (Appendix C 3). If
some nodes of the network have very high degrees, the
networks in the Markov chain can develop high edge-
multiplicities over time, which increases the probability
that a swap is rejected, leading to a ∆r = 0 swap. A sec-
ond issue arises when two edges of the network (x, y)
and (w, z) share exactly one common endpoint. If a
double edge swap proposes the change {(x, y), (w, z)} →
{(x,w), (y, z)}, then in expectation half the time the de-
gree assortativity will remain unchanged after the swap,
i.e., ∆r = 0. Because these edges are chosen uniformly
at random, the higher the degree of a node, the greater
the probability of that node appearing twice in the group
(x, y, w, z). Regardless of the source, the more ∆r = 0
steps that occur, the greater the serial correlation in the
chain, and the greater the sampling gap required to ob-
tain independent samples from the Markov chain.

To construct a heuristic that can efficiently decide
when a graph is likely to produce such undesirable effects
in the Markov chain, we draw on a related insight from
Chung-Lu random graphs, which are a vertex-labeled
model of simple graphs that constrain a network’s maxi-
mum degree. For Chung-Lu graphs, this constraint limits
the likelihood of producing a network with multi-edges,
and has a form maxi k

2
i ≤ 2m [87]. In our setting, it pro-

vides the basis for a simple heuristic to decide whether
a degree distribution is sufficiently right-skewed that it

would generate overly correlated states in the Markov
chain in the vertex-labeled space. We find that every
loopy multigraph in our corpus that exceeds a maximum
degree criterion of maxi k

2
i ≤ 2m/3 does indeed require

an unusually large sampling gap in the vertex-labeled
space (gray circles in Fig. 4g). In contrast, networks that
fall below this threshold produce sampling gaps that ex-
hibit the same linear relationship with m observed in
all graph spaces, and a scaling law of η0 = 2.3m pro-
duces a conservative upper bound (Fig. 4g). In gen-
eral, if a network exceeds a maximum degree criterion
of maxi k

2
i ≤ 2m/3, the sampling gap η0 in the vertex-

labeled space should be estimated using the sampling gap
algorithm (Algorithm 1).

In the stub-labeled case, the corresponding scaling law
obtained from all the 110 loopy multigraphs is η0 = 2m
(Fig. 4c). None of the networks in the stub-labeled space
have η0 higher than this proposed upper bound.

4. Multigraphs

Real world networks with multi-edges but no self-loops
are also uncommon. We construct an empirical corpus of
142 such networks by obtaining 32 of them from public
repositories and generating 110 multigraph networks by
removing the self-loops of our loopy multigraphs.

As with loopy multigraphs, the network’s degree distri-
bution and whether the space is stub-labeled or vertex-
labeled govern the choice of sampling gap η0 (see Ap-
pendix C 4). Repeating our analysis on this corpus of 142
multigraphs, we find that the estimated sampling gaps
of the networks in the stub- and vertex-labeled spaces
(Fig. 4d,h) exhibit similar patterns to the loopy multi-
graph spaces. These results corroborate the fact that
the probability of a double-edge swap rejection due to
self-loops (Eq. (6)) in negligible, as reflected by the simi-
larity of the Markov chain’s behaviour in the multigraph
and the loopy multigraph spaces. The scaling laws of
η0 = 2m for loopy multigraphs in the stub-labeled space,
and of η0 = 2.3m for loopy multigraphs in the vertex-
labeled space that satisfy the maximum degree criterion
maxi k

2
i ≤ 2m/3 provide good upper bound on the esti-

mated sampling gaps. Only one network (0.7%) in the
stub-labeled space has an estimated sampling gap 1.02
times our upper bound of η0 = 2m, and two in the vertex-
labeled space that satisfy the maximum degree criterion
(2.5%) have an estimated sampling gap 1.07 times our
upper bound of η0 = 2.3m.

C. Choosing the sampling gap efficiently

Although a suitable sampling gap η0 can be estimated
using Algorithm 1 for any graph space and degree se-
quence, our numerical experiments show that in many
cases, a sufficient gap may be chosen more efficiently us-
ing a simple scaling law in the number of edges in the
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FIG. 5. Decision tree of the space specific sampling gaps given by our heuristics, depending on the satisfiability of various
constraints (see text). In the loopy graph space, when the Nishimura criterion [16] is not satisfied, the Nishimura MCMC
should be used instead of the Fosdick et al. MCMC. Similarly, for stub-labeled loopy multigraphs the stub-matching algorithm
should be used.

network (Fig. 4). There are some conditions on applying
these scaling laws in practice, depending on the particu-
lar graph space and certain structural properties of the
network. In some cases, it is still be necessary to choose
η0 via Algorithm 1.

The decision tree in Fig. 5 organizes the insights, con-
ditions, and scaling laws obtained from our numerical ex-
periments into a simple and efficient heuristic for choos-
ing the sampling gap η0, depending on the network’s
properties and specified graph space. In cases where a
network satisfies the constraints for which a scaling law
can be used, we can choose η0 directly. For instance,
for each of the 89 networks in our simple network cor-
pus that satisfy the density criterion (ρ < 0.134), we
can immediately choose their sampling gap as η0 = 2m,
rather than running Algorithm 1, saving substantial sub-
stantial computational time, ranging from a few seconds
(n = 64,m = 243) to about 30 minutes (n = 16, 840,m =
48, 232) for the largest network in the corpus.

D. Convergence detection

In probability theory, the mixing time of a Markov
chain is the number of steps the chain needs to run before
its distance from stationarity is small [88]. For practical

purposes, the mixing time of a Markov chain often deter-
mines the run-time of the process that uses the Markov
chain for sampling purposes. Detecting convergence is
the practical task of deciding when a Markov chain has
run sufficiently long to be well mixed.

1. Designing the convergence method

We now specify a convergence test for the Fosdick et
al. MCMC. This test uses the Dickey Fuller-Generalised
Least Squares (DFGLS) test [89] to assesses whether a
sequence of states from the MCMC, represented as a se-
quence of degree assortativity values, possesses a unit
root, against the alternative of stationarity. A time-series
is called stationary when the statistical properties of the
series, such as the mean, variance and the covariance, are
independent of time. The DFGLS test first transforms
the time-series via a generalised least square regression
and then performs the Augmented Dickey Fuller (ADF)
test [90] to test for stationarity. The DFGLS test has
been shown to have greater statistical power than the
ADF test [89]. We use the presence of stationarity in
the Markov chain as evidence that the Markov chain has
converged on its equilibrium.

To perform the DFGLS test of convergence, we first
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FIG. 6. Network degree assortativity r as a function of the
number of double-edge swaps, s performed in the Markov
chain, for (a) a stub-labeled simple graph with n = 2642
nodes and m = 3303 edges, and (b) a vertex-labeled loopy
multigraph graph with n = 2837 nodes and m = 11, 407
edges. The vertical red line indicates the point at which our
diagnostic detects convergence.

populate a list of degree assortativity values for a se-
quence of graphs sampled by the Markov chain, starting
with the original network. We then perform the DFGLS
test on the sampled list. The test determines whether
the properties of the process generating the degree as-
sortativities is changing over time. If the test does not
reject the null-hypothesis of non-stationarity, we discard
the contents of the list and “slide” it forward, sample
new degree assortativity values from the Markov chain
to populate the list afresh, and then test again. We
repeat this process of slide, repopulate, and test, un-
til the DFGLS test rejects the null hypothesis of non-
stationarity, which we interpret as an indicator that the
MCMC has converged to its stationary distribution. We
choose the length of this list, which we denote as the
window-size, to be the sampling gap of the network. We
choose the window-size to equal the sampling gap of the
network because the sampling gap is proportional to the
rate at which the MCMC states are re-sampled in the
chain. The higher the number of swaps rejected in the
MCMC, the larger the sampling gap of the network. For
networks with a high rate of re-sampling, and hence a
low rate of change of network structure over time, assess-
ing only a narrow window of degree assortativity values
might result in an incorrect test outcome. Hence, using
the sampling gap of the network as the window size of
the DFGLS test ensures that the number of states used to
assess whether convergence has been reached is specific
to both the structure of the network and the sampling
behaviour of the MCMC in the relevant graph space.
Once convergence is detected by the DFGLS test, every

FIG. 7. Null distributions obtained after increasing numbers
of double edge swaps are applied to a simple network with
n = 1589 nodes and m = 2742 edges in the vertex-labeled
space, validating the correctness of our convergence detection
method. We find similar results for the other graph spaces.

η0 steps beyond the point of convergence provides effec-
tively an iid draw from the configuration model.

To illustrate this procedure, Fig. 6 shows the conver-
gence detected by our test for a simple network in the
stub-labeled space with n = 2642 nodes and m = 3303
edges, and for a loopy multigraph in the vertex-labeled
space with n = 2837 nodes and m = 11, 407 edges.
For these two networks, the method described here takes
about 30 seconds and about three minutes, respectively,
to generate 1000 samples from the configuration model
on a modern laptop.

2. Validating our method

If this convergence detection method works as desired,
the distribution of assortativity values after convergence
is detected should be stationary, meaning that running
the Markov chain longer should not alter the sampled as-
sortativity distribution (Fig. 7). To assess this behavior,
we tabulate the assortativity distributions of 500 states
sampled after m/8, after m/4, and after m/2 steps, and
then again at convergence and after 1000m steps, a point
sufficiently deep in the chain that we assume it represents
the converged distribution. The 1000m distribution pro-
vides a comparison against distributions sampled earlier
in the Markov chain.

As a first test, we apply this assessment to a sim-
ple vertex-labeled network with n = 1589 nodes and
m = 2742 edges. Fig. 7 shows the five sampled distri-
butions, along with the assortativity coefficient for the
original empirical network, which is the initial condition
of the Markov chain. In the pre-convergence phase, as the
MCMC walk lengthens from m/8, to m/4, and then to
m/2 steps, the assortativity distribution for the sampled
networks moves progressively further away from the em-
pirical value of the initial network. This non-stationary
behaviour indicates a steady decorrelation of the Markov
chain relative to its initial state, as double-edge swaps
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FIG. 8. Proportion of networks in each graph space for which
a KS test comparing the distribution of degree assortativity
values when convergence is detected and that after 1000m
swaps is statistically significant. The critical threshold of this
proportion is chosen such that the family-wise Type-I error
is 7.3%, 4.6%, 4.9%, and 5.3% in the simple, loopy, loopy
multigraph, and multigraph space, respectively.

progressively randomize the network’s structure. Once
convergence is detected, this non-stationary behavior is
no longer present. Instead the difference between the as-
sortativity distribution at convergence, and well beyond
it, is negligible, suggesting the test of convergence cor-
rectly detected the Markov chain’s convergence on the
target uniform distribution.

To formally quantify the correctness of this conver-
gence test in detecting the convergence of the MCMC on
its stationary distribution, we measure its accuracy on
all 509 networks across all the eight graph spaces. For
each network in a given graph space, we first obtain a
distribution of degree assortativity values at the time of
convergence detection by detecting convergence on 200
independent runs of the MCMC, taking one sample from
each chain at the point of convergence. We also obtain a
distribution of 200 degree assortativity values from 200
independent chains after each chain has been run for
1000m swaps (well beyond convergence). We then per-
form a standard two-sample Kolmogorov-Smirnov (KS)
test, with a significance level of α = 0.05, between the
assortativity distribution at the time of convergence and
after 1000m swaps.
If there are D networks in a given graph space, we re-

ject the null hypothesis of no early convergence detection
by our method in the given graph space if more than u of
the D KS tests are statistically significant. The family-
wise Type-I error rate for D KS tests is given by

αf = 1− FD,α(u) , (8)

where FD,α is the cumulative distribution function of the
binomial distribution Bi(D,α). Since D = 103, 154, 110,
and 142, for the simple, loopy, loopy multigraph and
multigraph spaces, respectively, we choose u = 8, 12, 9, 11

such that the family-wise Type-I error for D KS tests is
about 5%; this choice yields rates of 7.3%, 4.6%, 4.9%,
and 5.3%, respectively.

Fig. 8 shows the proportion of networks in each graph
space for which the null-hypothesis of the KS test is
rejected, as well as the critical threshold computed as
(u + 1)/D for each graph space. Any rejection rate be-
low the critical threshold indicates that our method did
not detect convergence too early. Because we obtain re-
jection rates below the critical threshold in each of the
eight graph spaces (Fig. 8), we conclude that our con-
vergence detection method accurately detects when the
MCMC has reached its stationary distribution in each of
the eight graph spaces.

3. Comparing convergence tests

Detecting convergence in a Markov chain Monte Carlo
algorithm is a common and non-trivial statistical prob-
lem, especially for scalar time series. Many techniques
exist. Although the underlying states in the double-edge
swap Markov chain are networks, our approach for de-
tecting convergence converts this graph sequence into a
sequence of scalar values. Here, we compare the method
described above with three commonly used scalar time se-
ries convergence tests: (i) the Geweke diagnostic [74], (ii)
the Gelman-Rubin diagnostic [72] and (iii) the Raftery-
Lewis diagnostic [73] (each of these methods is available
via libraries in Python [91] and R [92]).

A crucial consideration when selecting a convergence
test is whether the Markov chain in question satisfies the
particular test’s underlying requirements and assump-
tions [59]. Each of these three alternative tests make as-
sumptions that may not hold for the configuration model.
For instance, the Geweke diagnostic assumes that the
Geweke statistic derived from the sampled states will be
distributed as a standard normal variable in the asymp-
totic limit (see Appendix E 1). The Gelman-Rubin di-
agnostic assumes that the MCMC’s stationary distri-
bution of the scalar is normally distributed, and it re-
quires more than one Markov chain to be initialized at
highly dispersed initial states in the sample space (see
Appendix E 2). And finally, the Raftery-Lewis diagnos-
tic depends on a quantile; in some cases, the estimated
convergence rate may fall far below the rate required of
the full Markov chain [93] (see Appendix E 3).

We evaluate the performance of the four convergence
tests according to their accuracy and efficiency. First,
we say that a test is accurate if the degree assortativity
values at the time that the test detects convergence and
the corresponding values at 1000m steps into the Markov
chain are from the same distribution (i.e., a two-sample
KS test is not statistically significant). Second, we say
that a test is more efficient than other tests if it detects
convergence with fewer double-edge swaps compared to
the others. An ideal convergence test will perform well on
both accuracy and efficiency measures. An efficient but
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(b)
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FIG. 9. (a) The rate of early convergence (inversely pro-
portional to accuracy), and (b) the average number of swaps
applied before convergence is detected (inversely proportional
to efficiency) by the four convergence diagnostics applied to
all networks in the corpus, across all eight graph spaces.

inaccurate test would allow relatively fewer double-edge
swaps, but would tend to declare convergence too early,
producing a distribution of assortativity values that dif-
fers substantially from the target distribution. In con-
trast, an inefficient but accurate test would run a very
long Markov chain and declare convergence long after
the stationary distribution had been reached. In prac-
tice, if an ideal test is not available, the latter deviation
is preferable to the former.

We apply the four tests to each network in our cor-
pus using a window size equal to the sampling gap of
the network. As before, we measure a test’s accuracy by
performing a KS test, with α = 0.05, and record whether
the proportion of networks for which the KS test is statis-
tically significant is within the critical threshold or not.
To measure a test’s efficiency, we record the number of
steps in the Markov chain (averaged over 200 indepen-
dent MCMC runs) before each test detects convergence.

Fig. 9 shows the rate of early convergence (inversely
proportional to accuracy) and the average double-edge
swaps s̄ applied before convergence is detected (inversely
proportional to efficiency) across all networks in the cor-
pus, in all eight graph spaces. In terms of accuracy
(Fig. 9a), the DFGLS test performs well along with the
Geweke diagnostic: both tests have rates of early con-
vergence less than the critical bounds across all spaces.
In contrast, the Gelman-Rubin diagnostic exhibits a rate
of early convergence greater than or equal to the crit-
ical threshold in two of the eight graph spaces (stub-
labeled simple and vertex-labeled multigraph spaces), in-

dicating that in these spaces, it detects convergence be-
fore the MCMC has entered its stationary distribution.
The Raftery-Lewis diagnostic performs poorly in general
(> 90% rate of early convergence).
In terms of efficiency (Fig. 9b), the Geweke test is sub-

stantially less efficient than the other tests. In fact, in the
vertex-labeled multigraph and loopy multigraph spaces,
the Geweke test uses on average more than twice as many
swaps than the DFGLS test to detect convergence.
Across both experiments, the DFGLS test exhibits

high accuracy and high efficiency, while other techniques
tend to perform either slightly or dramatically worse on
one or both dimensions. Of the three, the Geweke di-
agnostic performs most similarly, exhibiting equivalent
accuracy, but with far less efficiency (Fig. 9b).

4. Mixing time across graph spaces

To estimate the mixing time of the Fosdick et al.
MCMC [15], we record the number of steps the MCMC
runs on average before convergence is detected by our
method for each network in our corpus, across the eight
graph spaces (Fig. 10).
We note that the convergence times of the networks

that fail to satisfy the density criterion, i.e., ρ < 0.134,
in the simple and the loopy graph spaces are much larger
than the ones that meet the criterion (Fig. 10 a, b, e,
f). Similarly, in the vertex-labeled multigraph and loopy
multigraph spaces, the convergence times of the networks
that fail to satisfy the maximum degree criterion, i.e.,
maxi k

2
i ≤ 2m/3, are also much larger than the ones that

meet it (Fig. 10 g, h). This pattern is consistent with the
pattern we observed for sampling gaps, where networks
that did not satisfy the density criterion in the simple
and loopy graph spaces or the maximum degree criterion
in the vertex-labeled multigraph and loopy multigraph
spaces have higher sampling gaps than those that did.
This similarity in behavior corroborates our suggestion
that particular aspects of the network’s structure deter-
mines the likelihood of re-sampling in the Markov chain,
which drives the MCMC’s behavior.
In Fig. 10, we overlay a straight line s̄ = 20m in all

eight graph spaces to provide a simple low dimensional
approximation of the central tendency of the mixing
times of the networks across both the stub- and vertex-
labeled simple and loopy graph spaces and the stub-
labeled loopy multigraph and multigraph spaces. For
the remaining two spaces, i.e., the vertex-labeled loopy
multigraph and multigraphs, the s̄ = 20m line offers an
approximation of mixing times for the networks that sat-
isfy the maximum degree criterion, and a lower bound
for those that do not. The linear trend between the av-
erage swaps to convergence and the size of the networks
in our results lead us to conjecture that the convergence
time of the Fosdick et al. MCMC [15] is Θ(m) except
in pathological cases. These results may represent a use-
ful insight for theoreticians interested in mathematical
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FIG. 10. Empirical scaling laws for mixing times of the Fosdick et al. MCMC (averaged over 200 chains). The networks that
do not satisfy the maximum density criterion in the simple and loopy graph spaces, or the maximum degree criterion in the
vertex-labeled multigraph and loopy multigraph spaces are shown separately (see legend). The red dashed line is a hand-fit
line showing an approximation of the central tendency of the mixing times of the networks in all graph spaces except the
vertex-labeled loopy multigraph and multigraph spaces (g-h), in which case it captures the central tendency for the networks
that satisfy the maximum degree criterion, and serves as a lower bound for the ones that do not.

bounds on the mixing time of the Fosdick et al. MCMC.

5. Extending convergence to other network
statistics

We now consider whether detecting convergence us-
ing the degree assortativity implies convergence for other
network statistics. For a particular network statistic, we
compare its distribution at the point of convergence ac-
cording to degree assortativity, and a distribution of the
same statistic after 1000m swaps have been applied. As
before, we repeat this for each network across all eight
graph spaces. The additional network statistics we ex-
plore are:

• Clustering coefficient: The clustering coefficient
of a network is the tendency of the nodes in the
network to cluster together in triangles. For sim-
ple and loopy graphs, it is defined as the ratio be-
tween the number of closed triples and the number
of connected triples (both open and closed). Since
there is no standard definition of clustering coeffi-
cient for graphs with multi-edges, we convert the
parallel edges of the multigraphs and loopy multi-
graphs to integer-weighted simple edges where edge
weights are the sum of multiplicities of the edges
between every pair of nodes, and then we use the

definition of clustering coefficient for weighted net-
works. One can define the clustering coefficient of
weighted networks in several ways [94–98]. Which
definition works best for a given scenario depends
on the research question being explored. The def-
inition we employ here defines the “intensity of a
triangle” as the normalised geometric mean of the
weights of the edges involved in each triangle, and
defines the weighted clustering coefficient of each
node i of the network as

C̃i =
2

ki(ki − 1)

∑
j,k ̸=i

(w̃ijw̃jkw̃ki)
1/3 , (9)

where ki is the number of neighbours of node i in
the weighted version of the network and the edge
weights are scaled by the largest weight in the net-
work, w̃ij = wij/max(wij) [96]. The weighted clus-
tering coefficient is then averaged over all nodes in
the network to obtain the global weighted cluster-
ing coefficient. This definition of weighted cluster-

ing coefficient ranges between 0 and 1, i.e., C̃i ∈
[0, 1], which ensures that C̃i equates to the un-
weighted clustering coefficient when weights are bi-
nary, and is invariant to permutation of the weights
within a single triangle [98].
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• Diameter: The diameter of a network is the length
of the longest of the geodesic path that exists be-
tween any pair of nodes. This definition of the di-
ameter produces the same answer regardless of the
graph space.

• Average path length: The average path length
of a network is the mean of all non-infinite geodesic
path lengths among all pairs of nodes in the net-
work. As in case of the diameter, average path
length is defined similarly for networks with and
without self-loops and multi-edges.

• Number of triangles: We count the number of
triangles in a simple and loopy network by count-
ing the number of occurrences of cliques of three
distinct nodes. For networks with multi-edges, we
convert the network to its weighted version as with
the clustering coefficient, and sum the triangle in-
tensities of each triangle, defined similar to Eq. (9)
as the geometric mean of the weights of the triangle,
where each weight is normalised by the maximum
weight in the network.

• Number of squares: For simple and loopy net-
works, we count the number of occurrences of
groups of four distinct nodes connected in a closed
path. For multigraphs and loopy multigraphs, we
take the sum of geometric means of the normalised
weights of all the squares in a network.

• Edge connectivity: The edge connectivity of a
network is defined as the minimum number of edges
that need to be removed from the network so that
the network becomes disconnected. In networks
with multi-edges, the multiplicity of the edges is
taken into account.

• Radius: The radius of a network is the smallest
of all the node eccentricities of a network, where
eccentricity of a node v is defined as the the max-
imum length of all the shortest paths between the
node v and any other node that is reachable from v.
The same definition of radius is used for networks
with and without multi-edges.

See Appendix F for an example on how these network
statistics change as swaps are applied. For comparing
the distributions at the point of convergence and after
1000m swaps, we again use a KS test with α = 0.05.
If the network statistic has a distribution with less than
10 unique values, we instead apply a chi-square test of
independence. Fig. 11 summarizes the proportion of net-
works in the corpus for which the tests are rejected across
the eight network statistics (including degree assortativ-
ity). Across each of the eight graph spaces, we find that
the distributions of all eight of the network statistics have
converged on their asymptotic forms when convergence is
detected according to degree assortavitiy, suggesting that

FIG. 11. Proportion of networks in each graph space for which
the test (either KS-test or the Chi-square test) of whether
the distribution of the network statistic (legend) at the point
where convergence is detected and that after 1000m swaps
have been applied on the network are the same is statistically
significant at the 0.05 level of significance.

degree assortativity converges more slowly than these al-
ternative statistics and hence represents a conservative
choice for a convergence test.

III. Applications

In this section we use two real-world examples to
demonstrate the application of our method on empiri-
cal networks. The goal is to evaluate whether an empiri-
cally observed network characteristic can be explained as
a consequence of the degree sequence alone.

A. The centrality of the Medici

In the 15th century, the Medici family rose to become
one of the most prominent and powerful families in Flo-
rence, Italy. Their support of art and humanism in Flo-
rence is believed to have led to the early Renaissance in
Europe. The network-based explanation that past stud-
ies [99] have provided for the Medici’s rise in power is
that they established themselves as the most central fam-
ily among other elite families in Florence, occupying the
most important position structurally, which they lever-
aged in terms of information flow, business settlements,
and political planning [100]. Fig. 12a shows the network
of marriage ties among 16 key elite Florentine families
(n = 16,m = 20) [79] whose support or opposition to-
wards the Medicis has been established [101] (note: a
broader network of contemporary Florentine families con-
tains 116 nodes [102]). This network is a simple vertex-
labeled network where each vertex represents a key Flo-
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(a) (b)

FIG. 12. (a) The Medici family marriage network, from
Ref. [99] with n = 16 nodes and m = 20 edges. (b) Each
family’s node degree, and harmonic centrality hi within the
Florentine network.

rentine family and two families are connected by an edge
if there is any marriage tie between them. It is evident
that the Medici had more connections than any other
family, including their key competitors the Albizzi and
the Strozzi. To quantify how well connected each Floren-
tine family was to the others, we compute the harmonic
centrality of each family i (Fig. 12b), defined as

hi =
1

n− 1

n∑
j=1;j ̸=i

1

ℓij
. (10)

Under this measure, the Medici family is indeed the
most important node in the network (hi = 0.633). Now,
we examine whether the highly central position of the
Medici family can be explained by the degree structure
of the Florentine network alone. To answer this question,
we generate an ensemble of 1000 random networks with
the same degree sequence as the Florentine network, and
compute the distribution of harmonic centralities for each
family in the network. We sample the random networks
from the simple vertex-labeled graph space, because in
the given setting, marriage ties cannot exist within the
same family (i.e., no self-loops), families are connected
if their members ever married with each other (i.e., no
multi-edges), and stubs do not have distinct labels (i.e.,
vertex-labeled).

Fig. 13a shows the difference between the observed har-
monic centrality of each family in the Florentine network
and the random values from the corresponding null model
ensemble. Notably, the difference between the observed
and expected harmonic centrality of the Medici family
in the observed network is negligible, indicating that in
the network of the elite Florentine families, the central-
ity of the Medici can be fully explained by the number of
marriage ties each Florentine family had in the network.

To illustrate how a conclusion about the explanatory
power of the network’s degree sequence alone depends

(a)(a)

(b)

Vertex-labeled simple graphs, 
Fosdick et al. MCMC 

Stub-labeled simplified 
loopy multigraphs,

stub-matching algorithm

FIG. 13. Boxplots illustrating the distribution of difference
between the harmonic centrality of each family in the observed
Florentine network and its harmonic centrality in the refer-
ence ensemble generated (a) from the simple vertex-labeled
graph space using our method, and (b) from the stub-labeled
loopy multigraph space using the random stub-matching algo-
rithm, where the graphs are simplified by removing self-loops
and collapsing multi-edges. The whiskers show the 5th and
95th percentiles and the boxes show the 25th and 75th per-
centiles with the median value indicated by solid lines; outliers
are not shown.

on the correct choice of reference distribution, we repeat
the analysis, but now generate the reference networks us-
ing the commonly used random stub-matching algorithm,
followed by collapsing multi-edges and removing self-
loops. This process of “simplifying” the sampled loopy
multigraphs ultimately changes the null model’s degree
sequence by introducing a bias, particularly among high
degree nodes, as the probability of participating in a self-
loop or multi-edge increases with degree. Additionally,
the random stub-matching algorithm samples networks
from the stub-labeled loopy multigraph space, which is
an incorrect graph space to sample the reference distri-
bution from in this context. Fig. 13b shows the difference
between the observed and expected harmonic centralities
of each Florentine family, using this alternative approach,
showing substantially different results compared to using
the correct graph space in Fig. 13a. In fact, the results of
Fig. 13b would lead one to incorrectly conclude that the
harmonic centrality of the Medici in the observed net-
work cannot be explained by the network’s degree struc-
ture alone, while Fig. 13a shows clearly that it can be.
This exercise illustrates the importance of using the cor-
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Girl
Boy

FIG. 14. (a) The emotional support network (n = 73,
m = 51) [103] of students of a Dutch high school (school no.
23). The gender assortativity coefficient of this network is
0.74. (b) The grey-shaded curve depicts the distribution of
gender assortativity coefficient of the networks generated from
the simple vertex-labeled graph space of the configuration
model, while the dashed-line of the right shows the gender
assortativity of the observed network (p < 0.0001). We find
evidence that the sharing of emotional support among the
students in this Dutch high school is significantly positively
correlated with gender.

rect method for generating a reference distribution for
such evaluations. Using the wrong method to generate
the reference distribution can lead to conflicting or er-
roneous conclusions without providing any indication to
the researcher of the error.

B. Gender assortativity in Dutch high school
emotional support network

Attribute assortativity or homophily in a network is
the tendency of nodes to be connected to others with
similar attributes. This form of assortative mixing can
be quantified in much the same way that we measure
degree assortativity in Eq. 1, except that we use a node
attribute ax as the variable of interest rather than the
degree:

b =

∑
xy(Axy − kxky/2m)axay∑

xy(kxδ(x, y)− kxky/2m)axay
, (11)

where ax denotes the scalar node attribute for node x.

In this example, we consider a survey of fourth grade
students in a Dutch urban high school (school no. 23)
that participated in the Dutch Social Behavior Study
1994-1996 [104]. In this network (Fig. 14a), nodes are
fourth grade students and two students are connected
by an edge if both students have indicated that they
give and/or receive emotional support from each other
(n = 73,m = 51). Students in this network appear to
exhibit a strongly gendered preference when giving and
receiving emotional support, with a gender assortativity
coefficient b = 0.74.

To assess whether this gender assortativity is merely
a consequence of the degree sequence of the network, we
generate a reference distribution of b using 1000 networks
with the same degrees. We select the graph space to be
simple vertex-labeled graphs, because in the study, a stu-
dent cannot receive support from themselves (i.e., no self-
loops), students are connected if they ever took/received
emotional support (i.e., no multi-edges), and stubs are in-
distinguishable (i.e., vertex-labeled). Fig. 14b shows the
resulting null distribution of gender assortativity coeffi-
cients for these reference networks, which indicates that
the observed gender assortativity is statistically signifi-
cant (one-sided p < 10−4). Thus, we conclude that the
sharing of emotional support among the students cannot
be explained merely by the underlying degree structure
and distribution of node attributes in this social network,
indicating the presence of other social mechanisms. Re-
peating this analysis on the other schools in the Dutch
Social Behavior Study yields a consistent pattern of gen-
dered emotional support exchanges.

IV. Discussion

The configuration model is among the most widely
used models of random graphs in network science. The
lack of accurate and efficient methods for generating
graphs from the configuration model has discouraged re-
searchers from using it as a null model in empirical re-
search, and has encouraged them to rely on a fast random
stub-matching algorithm, that is correct only for gener-
ating stub-labeled loopy multigraphs. Heuristics for con-
verting random loopy multigraphs into other types, e.g.,
simple graphs, introduce structural artifacts that can
contaminate empirical conclusions [15]. The methods de-
scribed here provide a solution to sampling from the con-
figuration model using the Fosdick et al. MCMC [15] in
eight graph spaces, defined by whether the target graph
is stub-labeled or vertex-labeled, and whether it allows
self-loops or not, and multi-edges or not.

Our approach transforms the sequence of graphs sam-
pled by the Markov chain into a scalar-valued sequence of
degree assortativity values (Fig. 3). We develop a novel
algorithm for estimating a sampling gap η0 (Algorithm
1) by which to obtain effectively uncorrelated draws from
the Markov chain. This algorithm is based on a stan-
dard autocorrelation test to determine how far apart two
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sampled states must be in order to be statistically in-
dependent. Applying this gap estimation algorithm to
a large corpus of 509 real-world and semi-synthetic net-
works, we identified and organized a set of simple decision
rules based on the empirical scaling behavior of estimated
gaps η0 with the number of edges m (Fig. 5). These
rules allow researchers to automatically select an appro-
priate sampling gap for a given network usually without
having to run the sampling gap estimation algorithm it-
self. We use the Dickey-Fuller Generalised Least Squares
(DFGLS) test to assess stationarity in this Markov chain
and show that the test accurately and efficiently detects
convergence in all eight graph spaces (Fig. 8). The de-
pendence of both the mixing time and the sampling gap
on the re-sampling rate of states in the Markov chain sug-
gests that the sampling gap offers a one-parameter sum-
mary of the underlying geometry of the space of random
graphs that the Markov chain samples from for a partic-
ular network. Our results support a conjecture that the
mixing time of the Markov chain in all eight graph spaces
is Θ(m) (Fig. 10).

Even though degree assortativity r is more computa-
tionally efficient to calculate on a potentially long se-
quence of networks than many alternative network statis-
tics, networks with very low variance in degrees do exist
(e.g., a k-regular network), and for these the degree assor-
tativity is either undefined, or changes negligibly as the
Markov chain progresses. In these cases, a different net-
work statistic should be used to summarize the sequence
of sampled graphs, e.g., the clustering coefficient, albeit
at a greater computational cost. The methods developed
here are only applicable to the classic configuration model
on dyadic networks, i.e., networks where edges are de-
fined as pairs of nodes. As such, different methods may
be needed for correctly sampling from the hypergraph
configuration model [105], in which edges are polyadic,
the configuration models for simplicial complexes [106],
or networks where edge weights cannot be interpreted
as multi-edges. Finally, the Fosdick et al. MCMC can-
not be applied to the loopy networks that do not satisfy
the necessary conditions for the loopy graph space to be
connected [16]. Such loopy networks are extremely rare.

Our analysis of the estimated sampling gaps reveals
several interesting patterns, along with useful insights

on space-specific conditions under which the double-edge
swap MCMC tends to re-sample states frequently. We
leave exploration of different choices for quantifying the
degree of autocorrelation between two sampled states,
and whether that may yield more efficient gap estima-
tion algorithms, for future work. Exploring whether a
more efficient test than ours could be constructed with-
out compromising its accuracy is another direction for
future work. The appearance of scaling laws in the esti-
mated sampling gaps, and the consistency of their form
across different graph spaces is intriguing. This pattern
may reflect a currently unknown but common underly-
ing topology both within and across these different graph
spaces. Investigating the origins of this common pattern
may yield deeper theoretical insights on guarantees for
MCMC convergence for sampling random graphs. Our
study may also provide insights on developing conver-
gence detection methods for other Markov chain algo-
rithms for networks [16], and other variations of the con-
figuration model, e.g., on graphs of fixed core-value se-
quence [107].
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A. Updating degree assortativity in O(1) time

Here, we provide the derivation for Eq. (2) using
Eq. (1).

As per Eq. (1),

r =

∑
xy Axykxky −

∑
xy(kxky)

2/2m∑
xy kxkxkyδ(x, y)−

∑
xy(kxky)

2/2m
. (A1)

Recall that

Sℓ =
∑
xy

Axykxky

S1 =
∑
x

kx = 2m

S2 =
∑
x

k2x, S3 =
∑
x

k3x

Now multiplying both numerator and denominator of
Eq. (A1) with 2m, we get

r =
S1Sℓ −

∑
xy(kxky)

2

S1

∑
xy kxkxkyδ(x, y)−

∑
xy(kxky)

2
. (A2)

Since δ(x, y) = 1 if x = y, and 0 otherwise, it can be
derived that

∑
xy

kxkxkyδ(x, y) = k31 + k32 + k33 + · · ·+ k3n =
∑
x

k3x = S3∑
xy

(kxky)
2 =

∑
x

(k2i )
2 = S2

2

Therefore,

r =
S1Sℓ − S2

2

S1S3 − S2
2

. (A3)

Hence Eq. (1) can be re-written in the form of Eq. (3)
which is a substantially faster way to calculate the
degree assortativity of a network. Now we show the
derivation for Eq. (2), which is the fast O(1) update
formula.

Note that in Eq. (1), the summation in the numera-
tor is over all possible node pairs x and y (n2 terms).
Let us now suppose that a swap {(x, y), (w, z)} →
{(x, z), (w, y)} takes place as shown in Fig. 2. This swap
results into the addition of the edges (x, z) and (w, y) as

https://icon.colorado.edu/
https://icon.colorado.edu/
https://pymc-devs.github.io/pymc/modelchecking.html
https://pymc-devs.github.io/pymc/modelchecking.html
https://cran.r-project.org/web/packages/coda/coda.pdf
http://dx.doi.org/10.21105/joss.01458
http://dx.doi.org/10.21105/joss.01458


21

well as the non-edges (x, y) and (w, z), and the removal
of the edges (x, y) and (w, z) as well as the non-edges
(x, z) and (w, y) for the calculation of r, where a non-
edge (i, j) means Aij = 0, Aji = 0 and an edge means
Aij = 1, Aji = 1. Hence, using Eq. (1), the change in the
numerator of r,

∆r′ = 2

[
kxkz + kwky − kxky − kwkz

]
.

Here the leading factor of 2 appears because the net-
work is undirected. Our earlier derivation shows that
when the denominator of r in Eq. (1) is multiplied by
2m, we obtain (

∑
i ki ×

∑
i k

3
i )− (

∑
i k

2
i )

2. Hence,

D =
∑
xy

(kxδ(x, y)− kxky/2m)kxky

=
(
∑

i ki ×
∑

i k
3
i )− (

∑
i k

2
i )

2

2m
,

and ∆r can be calculated using ∆r′ as

∆r =
(kxkw + kykz − kxky − kwkz)× 4m

(
∑

i ki ×
∑

i k
3
i )− (

∑
i k

2
i )

2
. (A4)

B. The autocorrelation function

The autocorrelation function of a sample measures the
degree to which its values are serially correlated, so that
the greater the serial correlation, the larger the value of
the autocorrelation function [108]. Mathematically, the
autocorrelation aτ at lag τ quantifies the average correla-
tion between a pair of values xt and xt+τ in the sequence,
separated by a lag of τ , and ranges from −1 ≤ aτ ≤ 1. It

is defined as aτ =
Rτ

R0
, where

Rτ =
1

T

T−τ∑
t=1

(xt − x)(xt+τ − x) ,

R0 =

T∑
t=1

(xt − x)2

T
.

where T is the sample size and 1 ≤ τ ≤ T − 1. Hence,
the autocorrelation Rh is the covariance of the sample,
and itself, at a lag of h, normalized by the variance of
the sample

Power-analysis: Consider a list Xη comprised of
degree assortativity values in which consecutive values
are the degree assortativities of graphs sampled η swaps
apart in the Markov chain. Based on empirical investiga-
tion, degree assortativity values of large networks in our
empirical corpus are roughly Gaussian. Let the size of
Xη be T . If the values in Xη are iid normally distributed

values, the lag-1 autocorrelation of Xη will have mean
and variance given by

µ(a1) = − 1

T
, (B1)

σ2(a1) =
T 4 − 4T 3 + 3T 2 + 4T − 4

(T + 1)T 2(T − 1)2
, (B2)

using τ = 1 in Eq. (4) and (5), respectively [80].
Hence, to assess if the degree assortativity values in Xη

are effectively independent (iid), we need to test whether
the lag-1 autocorrelation of Xη is different than expected
under iid sampling. We use Eq. (B1) and Eq. (B2) for
critical values assuming a normal approximation as in
Ref. [80]. Since each state in the Fosdick et al. MCMC
is expected to be positively correlated with the next and
the following state (except in pathological cases), we use
lag-1 autocorrelation tests that are upper-tailed.
In estimating a network’s sampling gap, we test for

independence using C different lists each of the form Xη,
obtained from C independent Markov chains because a
single Markov chain may not be representative of the
entire graph space. If each test is performed at a Type-I
error rate α, the number of tests rejected when the null
hypothesis is true would follow a binomial distribution
Bi(C,α). Suppose we reject the null hypothesis that Xη

consists of iid values if more than u tests are rejected.
Then the family-wise Type-I error of C tests is given by

αf = 1− FC,α(u) , (B3)

where FC,α is the cumulative distribution function of a
random variable following binomial distribution Bi(C,α).
Each test with sample-size T and Type-I error rate α

detects a lag-1 autocorrelation w with approximate power
P given by,

P = 1− Φ
(µ(a1)− w

σ(a1)
−Qα

)
, (B4)

where Φ is the cumulative distribution function of the
standard normal distribution, Qα is the αth quantile of
the standard normal distribution, and µ(a1) and σ(a1)
are given by Eq. (B1) and Eq. (B2) respectively. The
family-wise power Pf for C normality tests is then given
by

Pf = 1− FC,P (u) . (B5)

In the sampling gap algorithm (Algorithm 1), we
choose C = 10, u = 1, α = 4%, T = 500, and w = 0.1
so that we get a family-wise Type-I error rate αf = 5.8%
and family-wise power Pf = 99.9%.
If a network statistic other than the degree assorta-

tivity (for instance, clustering coefficient) is used for the
sampling gap algorithm, the normality assumption of the
statistic should be revisited, and other tests [80] should
be used if normality is not met.
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C. Dependence of sampling gap on the MCMC
transition probabilities

Algorithm 3 stub-labeled MCMC

Input: initial graph G0, graph space (simple, multigraph, or
loopy multigraph)

Output: sequence of graphs Gi

1: for i < number of graphs to sample do
2: choose two edges at random
3: randomly choose one of the two possible swaps
4: if edge swap would leave graph space then
5: re-sample current graph: Gi ← Gi−1

6: else
7: swap the chosen edges, producing Gi

Algorithm 4 vertex-labeled MCMC

Input: initial graph G0, graph space (simple graph, multi-
graph, or loopy multigraph)

Output: sequence of graphs Gi

1: for i < number of graphs to sample do
2: choose two distinct edges (u, v) and (x, y) uniformly

at random
3: if Unif(0, 1) < 0.5 then
4: u, v ← v, u

5: if edge swap would leave the graph space then
6: re-sample current graph: Gi ← Gi−1

7: if ∃ 4 distinct vertices in u, v, x, y then
8: A← wuvwxy

9: B ← (wux + 1)(wvy + 1)
10: else if ∃ 3 distinct vertices in u, v, x, y then
11: if u = v or x = y then
12: A← 2wuvwxy

13: B ← (wux + 1)(wvy + 1)
14: else
15: A← wuvwxy

16: B ← 2(wux + 1)(wvy + 1)

17: else if ∃ 2 distinct vertices in u, v, x, y then
18: if only one of (u, v) or (x, y) is a self-loop then
19: Gi ← Gi−1

20: continue
21: else if both (u, v) and (x, y) are self-loops then
22: A← 2wuuwxx

23: B ← 1
2
(wux + 2)(wux + 1)

24: else
25: A← 1

2
wuv(wuv − 1)

26: B ← 2(wuu + 1)(wvv + 1)

27: else
28: Gi ← Gi−1

29: continue

30: P ← min
(
1,

B

A

)
31: if Unif(0, 1) < P then
32: swap (u, v), (x, y)⇝ (u, x), (v, y) to produce Gi

33: else
34: Gi ← Gi−1

For reference, we have presented the stub-labeled and
the vertex-labeled double-edge swap MCMC algorithm
in Algorithms 3 and 4 adapted from Fosdick et. al [15].

In this appendix, we provide a discussion of how the
MCMC’s transition probabilities in different graph spaces
govern the respective sampling gaps we obtain using Al-
gorithm 1.

1. Simple graphs

In the stub-labeled space, if a double-edge swap would
cause the Markov chain to leave the graph space, e.g.,
by creating a self-loop or a multi-edge, the swap is re-
jected and the current graph Gt−1 is re-sampled by the
MCMC (Algorithm 3). Otherwise, the swap is accepted,
producing the new graph Gt.
In the vertex-labeled space, if a double-edge swap

would cause the Markov chain to leave the graph space,
the current graph Gt−1 is also re-sampled (Algorithm 4).
Otherwise, the algorithm checks the number of distinct
vertices and self-loops in the chosen double edges. In sim-
ple graphs, the number of distinct vertices among u, v, x
and y would either be 3 or 4, and the multiplicity wab

of any edge (a, b) would be 1, because multi-edges are
forbidden in the simple graph space. Hence, in Algo-
rithm 4, the variable B/A will be greater than or equal
to 1, and the variable P in the algorithm will always be
1. As a result, if a double-edge swap does not cause the
Markov chain to leave the vertex-labeled graph space, it
will always be accepted, producing the new graph Gt.
Hence, for simple graphs, the transition probabilities

are the same for both the stub-labeled and the vertex-
labeled space, and thus so are the induced null distribu-
tions too.

2. Loopy graphs

In the stub-labeled space, if a double-edge swap intro-
duces a multi-edge in the graph (which is forbidden), the
current graph Gt−1 is re-sampled. Otherwise, the swap
is accepted, producing the new graph Gt.
In the vertex-labeled space, if a double-edge swap

would cause the Markov chain to leave the graph space,
Gt−1 is re-sampled, otherwise, Algorithm 4 performs the
following check. If none of the edges chosen for the swap
are self-loops, then P = 1 and the swap is accepted. But,
if either of the chosen edges is a self-loop, then in Algo-
rithm 4, we set A = 2 and B ∈ 1, 2, 4. When B = 1, then
P = 1/2, and the swap will be rejected half the time. For
all other values of B, we have P = 1, and hence the swap
is accepted.
In our corpus of 161 multigraphs and loopy multi-

graphs, 86 (53%) of these networks have less than 5% of
edges as self-loops, and 129 (80%) of them have less than
20% of edges as self-loops. In fact, in any loopy network
with n nodes and m edges, there can be a maximum of
n edges that are self-loop and a minimum of m−n edges
that are not. Since for most networks m >> n, a ran-
domly chosen edge in a loopy network is more likely to
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not be a self-loop than be one. Therefore, if a proposed
double-edge swap does not move the Markov chain out
of the graph space, P assumes the value 1 with high
probability in Algorithm 4. Hence, the Markov chain
behaves very similarly in the stub-labeled and vertex-
labeled spaces for loopy graphs.

3. Loopy multigraphs

In the stub-labeled space, every double-edge swap is
allowed. Hence, swaps are never rejected and the graph
Gt−1 is never re-sampled.
However, in the vertex-labeled space, whether the pro-

posed double-edge swap is accepted or rejected depends
wholly on the multiplicity of the edges and the number
of distinct vertices chosen for the double-edge swap. In
Algorithm 4, there can be several ways in which the value
of the variable P is far below 1 and hence the graph Gt−1

will be re-sampled. For this reason, the MCMCs for stub-
labeled and vertex-labeled loopy multigraphs behave dif-
ferently, with a substantial number of re-samplings oc-
curing in the vertex-labeled space, and none in the stub-
labeled space.

4. Multigraphs

In both the stub-labeled and the vertex-labeled spaces,
a graph is re-sampled only if a double-edge swap would
introduce a self-loop in the network. However, in the
vertex-labeled space, re-sampling can occur for an ad-
ditional reason (Algorithm 4), depending on the multi-
plicity of the edges chosen for the double edge swap. In
this case, the Markov chain in the stub-labeled and the
vertex-labeled spaces have different transition probabili-
ties, which leads to different sampling gaps between the
two spaces.

D. Probability of rejection due to multi-edges and
self-loops

We derived the probability that a double-edge swap is
rejected because it introduces a multi-edge in a network
that is forbidden by the graph space is approximately
q × (2ρ− ρ2) (Eq. (7)), where q is the probability of two
randomly chosen edges being non-adjacent to each other
(Eq. (6)) and the probability of an edge existing between
two randomly chosen edges is approximately the network
edge density ρ. Fig. 15 shows the value of q for all 103
simple networks in our corpus. It is evident that q ≈ 1
for almost all these networks. Hence, we can approximate
the probability that a double-edge swap is rejected due
to the introduction of a multi-edge as (2ρ− ρ2).
Next, we calculate the probability that a double-edge

swap is rejected due to the introduction of a self-loop
when the graph space forbids them. When two edges

(a)

(b)

FIG. 15. (a) Probability q that two edges chosen uniformly at
random for a double-edge swap are non-adjacent, calculated
for all 103 simple networks in our corpus using Eq. (6). q ≈ 1
(b) Ratio e/f , where e is the rate at which a swap is rejected
due to the introduction of a multi-edge and f is that due
to a self-loop. Rejection due to multi-edges is 5-2500 times
more than that due to self-loops, and this ratio increases as a
network’s density grows.

chosen for a swap are adjacent to each other (Fig. 2b),
one of the two possible swaps introduces a self-loop (prob-
ability = 0.5), while the other one does not. Therefore,
Pr

(
rejection due to self-loop

)
= (1 − q)/2. Since q ≈ 1

(Fig. 15a), Pr
(
rejection due to self-loop

)
≈ 0. Thus,

even if a graph space forbids self-loops, the probability
of a swap being rejected due to the introduction of one
is almost negligible.
To test the relative rejection rates due to multi-edges

and self-loops, for each of the 103 simple networks in our
corpus we let the MCMC run for a burn-in period of
1000m swaps and we then let it run for another 1000m
swaps recording what fraction of those swaps are rejec-
tion due to a multi-edge (e) or a self-loop (f) (Fig. 15b).
Rejection due to multi-edges is 5-2500 times more than
the rate due to self-loops. The increase in the ratio e/f
with increasing edge density is expected since the higher
the density of the network, the higher the probability
that an edge already exists between nodes selected for a
double-edge swap.

E. Common MCMC convergence tests

PyMC [91] is a Python package for Bayesian statis-
tical modeling and advanced MCMC algorithms, and it
provides implementations of three common convergence
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tests for generic MCMCs: the Geweke diagnostic [74], the
Gelman-Rubin diagnostic [72], and the Raftery-Lewis di-
agnostic [73].

1. The Geweke diagnostic

The Geweke convergence diagnostic [74] compares the
mean and the variance of samples from the beginning and
the end of a single chain of a MCMC walk. Geweke [74]
takes the beginning section to be the first 10% of the
chain and the ending section to be the last 50%. The
test uses the Geweke statistic, defined as the difference
between the means of the two samples divided by the
standard error. These statistics are estimated using the
spectral densities of the two samples evaluated at zero,
which takes into account the autocorrelations in the sam-
ples. The method uses the departure of the Geweke
statistic from the standard normal assumption as an indi-
cator of convergence failure. However, the test statistic is
calculated under the assumption that when the MCMC
reaches its stationary distribution, the two chain sam-
ples will be distributed according to a standard normal,
in the asymptotic limit. The test also assumes that the
spectral density of the time series has no discontinuities
at frequency zero [59]. Whether these assumptions are
satisfied depends on the process that produces the time
series. The Geweke diagnostic is known to be very sen-
sitive to the chosen spectral window [59]. Hence, the
behavior of the Geweke test may depend on the degree
to which properties of the stationary distribution of the
particular MCMC are known.

2. The Gelman-Rubin diagnostic

The Gelman-Rubin diagnostic [72] compares the
within-sequence variability and between-sequence vari-
ability of multiple sequences (at least two) obtained from
MCMCs with starting points sampled from an overdis-
persed distribution. This test is based on the idea that
when an MCMC has not yet converged, the variance
within each chain is much less than that between the
chains, because prior to convergence, the MCMC sam-
ples states non-uniformly. If θ denotes the sequence of an
MCMC chain, then first, an estimate of the marginal pos-
terior of Var(θ) is calculated as a function of the within-
sequence variance (W ) and between-sequence variance
(B) of the multiple sequences. If the MCMC walks have
not yet converged, B would overestimate Var(θ) because
the walks’ starting values were chosen to be overdis-
persed, whereas W would underestimate Var(θ) because
the MCMC walks have not yet saturated the states in
the stationary distribution.

The Gelman-Rubin statistic is then given by the square
root of the ratio of Var(θ) and W . In the stationary dis-
tribution of the MCMC, both Var(θ) and W should ap-
proach the true variance of the MCMC chain, and hence

values of the Gelman-Rubin statistic close to 1 indicate
convergence. In general, practitioners often use a cut-
off of 1.1 as an indicator of convergence. This conver-
gence test assumes that the stationary distribution of
the MCMC is normal. Cowles and Carlin [59] suggest
that both the assumption of a normal approximation of
the target distribution, and the requirement of multiple
MCMC chains with highly dispersed initial conditions,
may not be reasonable in most practical situations.

3. The Raftery-Lewis diagnostic

The Raftery-Lewis diagnostic [73] is based on two-state
Markov chain theory and standard sample size formu-
lae for binomial variance. In particular, it calculates the
burn-in period of the Markov chain and the total number
of subsequent iterations required to accurately estimate
u, a q-quantile of the MCMC’s posterior distribution.
The value of q, the margin of error r, and the probability
s of obtaining the estimate in the interval (q−r, q+r), are
all user-defined parameters, although the default value of
s is 95%. The method also calculates a thinning inter-
val k, which is the number of iterations that should be
skipped to produce a chain of independent samples from
the Markov chain (analogous to η0 in our method).
From the Markov chain {θt}, the Raftery-Lewis

method first constructs a 0-1 binary chain {Zt}, and then
chooses the thinning interval k to be the smallest natu-
ral number for which a first-order Markov chain model
of the thinned out chain is statistically preferred over the
second-order Markov chain model. For convergence de-
tection purposes, we are interested only in the burn-in
period’s value, which provides an estimate of the number
of steps needed before the MCMC reaches its station-
ary distribution [57]. A detailed analysis of the Raftery-
Lewis method by Brooks and Roberts [93] shows that
the method depends strongly on the quantile of interest
q and it does not provide information about the chain
as a whole [93]. Furthemore, in certain cases, the con-
vergence rate estimated by this method is far below the
convergence rate of the full chain [93]. As a general rule,
they find that the routine value of q = 0.025 commonly
used in the literature should not be used, as it tends to
underestimate the true convergence time. Instead, they
suggest that for practical purposes, the diagnostic could
be applied to several different q values and then choose
the quantile that estimates the largest burning length.

F. Other commonly used network statistics

In this section, we provide an example showing how the
network statistics beyond the degree assortativity, i.e.,
the clustering coefficient, diameter, average path length,
number of triangles, number of squares, edge connectivity
and radius, change as double-edge swaps are applied on
a vertex-labeled network with 1015 nodes and 9988 edges
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FIG. 16. Eight different network statistics as a function of the number of double-edge swaps performed for a vertex-labeled
loopy multigraph n = 1015 nodes and m = 9988 edges. The red line denotes the point where our method detects convergence
based on degree assortativity. Each statistic is calculated at intervals of 100 double-edge swaps.

(Fig. 16). Since some of the network statistics are com-
putationally expensive to compute and the network size
is fairly large, we calculate the statistics once after every
100 double-edge swaps. Each network statistic’s value

moves away from the initial value as more double-edge
swaps are applied. After sufficient swaps are applied, the
network statistic converges towards a value, after which
it displays non-trivial fluctuations around it.
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